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Knots in self-avoiding walks 
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Abstract. In this paper we discuss the existence of knots in random self-avoiding walks 
on a lattice. Using Kesten’s pattern theorem, we show that almost all sufficiently long 
self-avoiding walks on the three-dimensional simple cubic lattice contain a knot. 

1. Introduction 

The problem of the occurrence of knots in a long linear polymer chain seems to have 
been first addressed by Frisch and Wasserman (1961) and by Delbruck (1962). Both 
groups formulated questions about the probability that a closed chain (i.e. a loop) 
with degree of polymerisation n would contain a knot. They conjectured that the 
probability that a loop would contain a knot would tend to unity as n tends to infinity. 
Edwards (1967) has emphasised the importance of topological constraints in the 
statistical mechanics of long polymer molecules and de Gennes (1984) has pointed 
out the possible importance of knots in long-time memory effects in melts of linear 
polymers. In addition, knots occur in circular DNA and provide information about 
enzyme mechanisms (see, for instance, Wasserman and Cozzarelli 1986). In spite of 
this, rather little theoretical work has appeared on knots in polymers. 

In order to attack these questions theoretically we need a suitable model of an 
open or closed polymer chain. The model which we shall use in this work is a 
self-avoiding walk (or self-avoiding polygon) on the three-dimensional simple cubic 
lattice. It is well known that this model is a useful one for describing excluded-volume 
effects in polymers in dilute solution and it is an attractive model for looking at 
problems associated with knots since a self-avoiding polygon is topologically equivalent 
to a closed polymer chain. 

This problem has been investigated numerically by several workers, of whom 
Vologodskii et al (1974) carried out the first Monte Carlo treatment of knotting in 
self-avoiding polygons. They generated a random sample of such polygons of fixed 
length and identified the knotted configurations by computing the Alexander poly- 
nomial. In fact they found that, for the polygon lengths which they studied ( n  less 
than about 150), the probability P 0 ( n ) ,  of finding a knot was very small (of the order 
of or less). They also examined a random walk model (without the self-avoiding 
condition). When a self-intersection occurred they shifted the lattice by a small amount, 
along some randomly chosen direction, which has the effect of passing the chain under 
or over itself at each point which would otherwise be an intersection. They found that 
the knotting probability was much higher in this second model, and increased with 
increasing n. Several other Monte Carlo studies have been carried out more recently 
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(des Cloizeaux and Mehta 1979, Michels and Wiegel1984,1986, Brinke and Hadziioan- 
nou 1987) with basically similar results. These studies all support a lattice version of 
the Frisch-Wasserman-Delbruck conjecture (see e.g. Sumners 1986) which can be 
stated as the following conjecture. 

Conjecture. For a self-avoiding polygon of length n, the knot probability tends to unity 
as n tends to infinity. 

In this paper we shall give a proof of the validity of this conjecture. The key to the 
proof is a result of Kesten (1963) which says that if a 'pattern' (i.e. a finite self-avoiding 
walk) can appear (more than twice) in a self-avoiding walk, then it will appear at least 
once in 'most' sufficiently long self-avoiding walks. By extending this result to polygons, 
and constructing a suitable knotted pattern, we prove the following theorem. 

Theorem 1 .  All except exponentially few sufficiently long self-avoiding polygons on 
the simple cubic lattice contain a knot. 

This implies the validity of the Frisch-Wasserman-Delbruck conjecture. Most poly- 
mers are linear, not ring polymers. In the standard definition of a knot, a linear polymer 
is never knotted since one can thread one of the free ends through any entanglement 
and eventually untangle the polymer. The question of the knotting probabiIity for 
linear polymers would be answered immediately by Kesten's theorem if we had a 
suitable definition of 'knottedness'. We shall show that, for self-avoiding walks on the 
simple cubic lattice, it is possible to develop a suitable definition for knotting. This 
is because a self-avoiding walk on a lattice generates a unique three-dimensional 
excluded volume for itself. Sometimes this excluded volume is a 3-ball (homeomorphic 
to the set of all vectors of length less than or equal to one in 3-space). In this situation 
we can produce an arc (homeomorphic to the unit interval) embedded in the 3-ball, 
with its two boundary points trapped in the 2-sphere boundary of the 3-ball. Such an 
arc is said to be properly embedded in the 3-ball. Under these circumstances knotting 
is well defined and we can use Kesten's theorem to prove the following theorem. 

Theorem 2. All except exponentially few sufficiently long self-avoiding walks on the 
simple cubic lattice contain a knotted arc. 

2. Definitions 

We take the standard knot theory definitions (Burde and Zieschang 1986). Let R" 
denote Euclidean n -space. All homeomorphisms will be orientation preserving. The 
unit sphere in R" is S"-' = {x E R" I 1x1 = 1). The unit ball in R" is B" = {x E R" I 1x1 l}. 
Let f :  SI + R 3  be an embedding (a  placement of the circle in 3-space). Topologists 
usually restrict embeddings to be smooth or piecewise linear to avoid infinite (wild) 
pathology. We shall work in the piecewise-linear category, since we shall be considering 
self-avoiding walks on the simple cubic lattice in R3.  The embedding f determines a 
manifold pair, ( R 3 , f ( S ' ) ) .  If  we think of the standard embedding of R 2  ( X Y  space) 
in R3 ( X Y Z  space), this defines a standard embedding of SI in R3. This embedding 
determines the unknot ( R 3 ,  SI). An embedding f :  SI + R3 determines a knot if the 
pair ( R 3 , f ( S ' ) )  is not homeomorphic to the standard pair ( R 3 ,  SI). I f f ;  g are a pair 
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of embeddings of SI in R3,  they determine equivalent knots if there is a homeomorphism 
of pairs H : ( R 3 , f ( S ’ ) )  + ( R3, g(S’)). This definition agrees with the intuitive idea of 
a knot: two placements of the circle in 3-space are equivalent if it is possible to 
continuously deform one configuration (without cutting it or passing it through itself) 
until it can be superimposed upon the other. An embedding of a circle in 3-space is 
unknotted if it can be continuously deformed to a planar embedding. 

There are analogous definitions of knotted arcs ( B ’ )  in the 3-ball ( B3) .  Letf: B’ + B3 
denote a proper embedding; i.e. one in which f - ’ ( d B 3 )  = dB’. That is, the boundary 
points of B’ are sent into the boundary of B3 under the embedding f, and no other 
points of B 1  are sent into the boundary by J: There is a standard embedding of B’ in 
B3, determined by the standard embedding of RI ( X  space) in R3. This gives us the 
standard unknotted object in this context, ( B3,  B ’ ) .  The embedding f determines a 
knotted ball pair if the pair ( B 3 , f (  B l ) )  is not homeomorphic to the standard ball pair. 
As before, two embeddings f, g determine equivalent ball pairs if there is a homeo- 
morphism of pairs between them. The reason that one can get knotted arcs in this 
context is because the endpoints of the arc are trapped in the boundary 2-spheres of 
the 3-balls. In figure 1, configuration ( a )  is the standard (unknotted) ball pair, and 
( b )  is a knotted ball pair. Note that for the unknotted ball pair the 1-ball can be 
continuously deformed so that m i e s  entirely in the surface of the 3-ball. This is not 
possible for the knotted ball pair. Configurations (c )  and ( d )  of figure 1 illustrate the 
point that the 3-space surrounding an embedded arc is crucial in determining whether 
or not we have a knotted ball pair. This is a relative phenomenon, and an arc is 
knotted relative to certain 3-balls in which it is properly embedded, and unknotted 
relative to certain others. In configuration (c), for example, the apparently knotted 
arc determines an unknotted ball pair. The surrounding 3-space is ‘knotted’ in the 
same way as the arc, and together they determine the standard ball pair. In configuration 
( d )  the apparently straight arc is in fact knotted, and determines the same knotted 
ball pair as that of configuration ( 6 )  ! 

Consider now the integer simple cubic lattice in R3.  A step is a directed edge 
joining two adjacent lattice points. A self-avoiding walk of n steps beginning at lattice 
point xo is an ( n  + 1)-tuple of distinct lattice points X = (xo, xl, . . . , x”), where x, and 

I C )  Id1 

Figure 1. ( a )  The standard unknotted ball pair. ( b )  A knotted ball pair containing a trefoil. 
( c )  is topologically equivalent to ( a )  and ( d )  is topologically equivalent to ( b ) .  
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x i+ ,  are adjacent in the lattice. Each occupied lattice site in a self-avoiding walk sits 
in the middle (barycentre) of a dual 3-cube (the Wigner-Seitz cell), and one can think 
of this dual 3-cube as the ‘excluded volume’ generated by that occupied vertex. If one 
takes the union of all the Wigner-Seitz cells determined by the vertices of the self- 
avoiding walk X ,  one obtains the lattice neighbourhood of X ,  written N ( X ) .  If X is 
a subwalk of a longer walk Y, let ( Y - X )  denote the graph obtained by deleting the 
edges of X .  The intersection of ( Y - X )  with N ( X )  consists of (at most) two half- 
intervals on the lattice, where the longer walk exits N ( X ) .  Suppose that X is a 
self-avoiding walk of n steps, ( n  3 3 ) .  X determines a unique derived walk X ‘ ,  where 
X ’  is the walk of ( n  -2) steps obtained from X by deleting the first and last step. 
Suppose that N ( X ’ )  is homeomorphic to B 3 .  Let X ”  denote the intersection of X 
with N ( X ‘ ) .  We then have a unique ball pair ( N ( X ’ ) ,  X ” )  determined by the self- 
avoiding walk X .  It may happen that this ball pair is indeed knotted. If this is the 
case, we say that X is a knotted arc. If a self-avoiding walk Y contains a subwalk X ,  
and X is a knotted arc, then we say that Y contains a knotted arc. If the self-avoiding 
walk X is a knotted arc, and X is a subwalk of a self-avoiding walk Y, then all the 
steps of Y - X must avoid N (  X ’ ) ,  and the ‘knottedness’ cannot be undone by ‘threading 
back through the knot’. One thinks of such a knot as ‘tight’. More precisely, if the 
self-avoiding walk X is closed into a circle in R3 by adding an arc which misses N ( X ’ ) ,  
then this circle must be knotted, because it contains the knotted ball pair ( N ( X ‘ ) ,  X ” ) .  
The proof of this fact involves computation of the fundamental group of the comple- 
ments of the objects involved, and realising that an object (arc or circle) is knotted if 
the fundamental group of its complement is not the infinite cyclic group (Burde and 
Zieschang 1986). As an example of a (trefoil) knotted self-avoiding walk, let { i ,  j ,  k }  
denote the unit vectors in the X ,  Y, Z directions, respectively, and let {-i, -j ,  - k }  
denote the negatives of these unit vectors. If one is standing at an integral lattice point 
in R3, one can take a step of length one in any of the six directions { i, -i, j ,  -j, k, - k } .  
Starting at the origin in R’, take the following walk ( T )  of 18 steps: 

T : { i , i , j ,  k, k , - j , - j , - k , - i , - k , - k , j , j ,  k, k , - j , i , i } ,  

In the above, T stands for trefoil, and the reader will verify (by drawing the relevant 
plug from the simple cubic lattice, or making a model out of matchsticks) that N (  T ’ )  
is homeomorphic to B3, so that T is a knotted arc. Moreover, any walk that has T as 
a subwalk has the trefoil in it. It is clear that the walk T can be closed up to yield 
the trefoil (three-crossing) knot. The above construction can in fact be performed for 
any arbitrary knot. Details will appear elsewhere. 

3. Proof of results 

Suppose that cn is the number of n-step self-avoiding walks with the first vertex at the 
origin on the simple cubic lattice. Then Hammersley and Morton (1954) have shown 
that 

A pattern is any finite self-avoiding walk. We first state a lemma about the occurrence 
of patterns due to Kesten (1963). 
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Lemma 1. If there exists a self-avoiding walk on which a pattern ( P )  occurs three 
times then the number (c,(P)) of n-step self-avoiding walks on which P does not 
occur is such that 

Iim sup n-' log c,(P) = A(P)  < K. 
n-iF 

(3.2) 

Let U, be the number of directed n-edge (self-avoiding) polygons roofed at the origin. 
Then (Hammersley 1961) 

(3.3) lim n- '  log U, = lim n- '  log c,  = K. 

U, = np,. (3.4) 

n-cc  n-cs 

If pn is the number of directed but unrooted polygons we have 

If we write p , ( P )  and u , ( P )  for the numbers of polygons and rooted polygons 
respectively which do not contain a pattern P then 

u , ( P )  = np,(P) (3.5) 
since adding or removing a root does not affect the non-existence of a pattern. 

If the last edge of a rooted polygon (i.e. the in-edge incident on the root) is deleted, 
the corresponding graph is a self-avoiding walk with ( n  - 1) edges. Moreover, deleting 
an edge cannot create a pattern so that 

u , ( P ) s  c,-,(F). (3.6) 
Equations (3.2) and (3.6) together establish the following lemma. 

Lemma 2. If there exists a self-avoiding walk on which a pattern ( P )  occurs three 
times then the number of directed and rooted polygons on which P never occurs is 
such that 

with a corresponding result for pn (P) .  
Since T 3  (the concatenation of T with two suitably translated copies of T )  is a 
self-avoiding walk, we can replace P by T in lemma 2. Hence, the number of polygons 
on which T never occurs is an exponentially small fraction of the number of polygons 
and we have theorem 1. 

The probability that a polygon does not contain the pattern T is given by 

U,( ?)/U, S exp[(A - K ) n  +o(  n ) ]  (3.8) 
where A = A (  7 )  < K. The probability P o ( n )  that an n-edge polygon is knotted is 
bounded below by the probability that it contains the knotted arc T, so that 

1 2  Bo(n)  5 U,( T ) / u ,  2 1 -exp[(A - ~ ) n  +o( n ) ]  (3.9) 
and Bo( n )  + 1 as n + 00. Moreover the limit is approached exponentially rapidly. (Here 
U,( T) is the number of polygons which contain at least one copy of T.) 

Similarly, taking P = T in (3.2) immediately gives theorem 2. Again, the probability 
9( n )  that a self-avoiding n-step walk contains a knotted arc is bounded below by the 
fraction of walks containing at least one copy of T, c,( T)/c,  and 

(3.10) 
Hence, the probability that a self-avoiding walk contains a knotted arc tends to unity, 
exponentially rapidly, as n + 00. 

1 2 B( n )  L c,( T ) /  c, L 1 - exp[ n (  A - K )  + o( n)].  
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4. Discussion 

The results presented in this paper establish the validity of the Frisch-Wasserman- 
Delbruck conjecture for self-avoiding polygons on the simple cubic lattice. I n  addition, 
we have shown that one  can give a suitable definition of knotting in a self-avoiding 
walk and that the knot probability goes to unity as n goes to infinity. 

This implies that the low value of the knotting probability found for self-avoiding 
polygons by Vologodskii er al (1974) is a small n effect. However, it would be very 
useful to have more information on the n-dependence of the knot probability. Our  
results on the rate of approach to the limit are weak and, except for the information 
available from Monte Carlo work, this is still an  open question. 
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